Thomas E. B itterwolf, ${ }^{\text {a }}$ A lberto C eccon, ${ }^{\mathrm{b}}$ A lessandro G ambaro, ${ }^{\mathrm{b}}$ P aolo G anis, ${ }^{\text {c }}$ D ietmar K uck, ${ }^{\text {d }}$ Francesco M anoli, ${ }^{e}$ A rnold L. R heingold, ${ }^{\mathrm{f}} \mathrm{G}$ iovanni Valle ${ }^{9}$ and Alfonso Venzo ${ }^{\text {e }}$
a D epartment of C hemistry, U niversity of Idaho, M oscow, I daho 83843, USA
${ }^{\text {b }}$ D ipartimento di Chimica Fisica, U niversità di Padova, Via L oredan 2, 35131 Padova, Italy
${ }^{\text {c }}$ D ipartimento di Chimica, U niversità di N apoli, Via M ezzocannone 4, 80134 N apoli, Italy
${ }^{\text {d }}$ F akultät für C hemie, U niversität B iel efeld, U niversitätstraße 25, D-33615 B iel efeld, Germany and Fachbereich für C hemie und C hemietechnik, U niversität-Gesamthochschule Paderborn, W arburger Straße 100, D-33098 Paderborn, Germany
${ }^{\text {e }}$ CN R , C entro Studi Stati M olecolari R adicalici Eccitati, Via L oredan 2, 35131 Padova, I taly
${ }^{\text {f }}$ D epartment of Chemistry, U niversity of D elaware, N ewark, D elaware 19716, U SA
${ }^{\mathrm{g}}$ CN R , C entro di Studio sui Biopolimeri, Via M arzolo 3, 35131 Padova, Italy

The reaction of $4 b, 9,9 a, 10$-tetrahydroindeno[1,2-a]indene, B , with $\mathrm{Cr}(\mathrm{CO})_{6}$ in boiling mixtures of $\mathrm{Bu}_{2} \mathrm{O}$ and tetrahydrofuran (THF) (9:1) affords two mono-complexes, one of which bears the $\mathrm{Cr}(\mathrm{CO})_{3}$ group bonded to the convex side of the ligand (anti complex, B1) and the other inorganic unit to the concave side of B (syn complex, B2). A fter prolonged reaction times, two bis-complexes were isolated, the first having one $\mathrm{Cr}(\mathrm{CO})_{3}$ group bonded to the convex side of B and the other to the concave side (syn, anti bis-complex, B3), and the second having both of the inorganic groups bonded to the convex side of B (anti,anti biscomplex, B4). The results of X-ray structural analysis support the hypothesis that the stereochemistry of the first and the second metallation reaction are related to the conformation of the ligand as induced by the steric interactions between aliphatic hydrogen atoms. The results confirm the existence of weak bonding interactions between oxygen atoms of the syn- $\mathrm{Cr}(\mathrm{CO})_{3}$ carbonyl groups with vicinal benzene rings bearing an anti- $\mathrm{Cr}(\mathrm{CO})_{3}$ group as well as methylene protons.

Introduction

Among the lower members of the centropolyindans, ${ }^{1}$ 4b,5,9b,10-tetrahydroindeno[2,1-a]indene, A, and 4b,9,9a,10tetrahydroindeno $[1,2$-a]indene, \mathbf{B}, represent the two possible

diindan isomers of different molecular symmetry arising from the linear and cis fusion of two indan units.

Recently, the chemistry of the C_{2}-fuso-diindan \mathbf{A} with respect to the complexation with $\mathrm{Cr}(\mathrm{CO})_{3}$ has been reported, ${ }^{2}$ and its patterns of substitution have been found to be related to the C_{2} molecular symmetry of the ligand. A particularly facile access to \mathbf{B} has been published recently, ${ }^{\mathbf{3}}$ and this isomer appears to

[^0]have the potential of possessing a perfect C_{s} symmetry. H owever, a twist about the central bond allows the molecule to relieve the strain associated with the nonbonded interactions, thus giving rise to a structure in which the two indan moieties are geometrically nonequivalent. ${ }^{4}$ Interestingly, the resulting asymmetric conformation of the C_{5}-fuso-diindan \mathbf{B} resembles the propellane ${ }^{5}$ (the so-called triptindan, \mathbf{C}), of which B can be thought to comprise two thirds of the whole molecule. We therefore anticipated close similarities in the complexation behaviour of \mathbf{B} and \mathbf{C}.
The complexation of \mathbf{B} with $\mathrm{Cr}(\mathrm{CO})_{3}$ under standard conditions leads to a series of isomers arising from the possibility of syn and anti orientation of the inorganic unit that can coordinate to the concave or convex side of this bent molecule. The relative yields and stability of these isomers are strongly controlled by steric effects.
We report here the synthesis and the crystal and molecular structure of the anti-mono-tricarbonylchromium, syn-monotricarbonylchromium and syn,anti-bis-tricarbonylchromium derivatives of C_{5}-diindan B. A correlation between chemical results and molecular geometries will be discussed.

Results

The $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes of \mathbf{B} have been obtained following the procedure described previously. ${ }^{2,5,6}$ By working with an excess of the complexing agent, $\mathrm{Cr}(\mathrm{CO})_{6}$, and prolonged reaction times

Table 1 Complexation products of $4 b, 9,9 a, 10$-tetrahydroindeno[1,2-a]indene, $\mathbf{B}^{\text {a }}$

Run	Reagent	$\mathrm{Cr}(\mathrm{CO})_{6} /$ reagent (mol:mol)	Reaction time/ h	Conversion (\%)	Y ield (\%) ${ }^{\text {b }}$				
					B	B1	B2	B3	B4
$1{ }^{\text {c }}$	B	1:1	6	14		65	35	Traces	-
$2{ }^{\text {d }}$	B	3:1	24	>99	<1	28	5	49	18
$3{ }^{\text {e }}$	B1	3:1	7	0			-	-	-
			24	27	89		-	11	-
$4^{\text {f }}$	B2	3:1	7	15	-	30		70	-
			24	37	-	56		44	-

a Solvent, $\mathrm{Bu}_{2} \mathrm{O}$-THF $90 / 10 \mathrm{v} / \mathrm{v}$; $\mathrm{T}, 142^{\circ} \mathrm{C}$. Conversions and yields were determined by integration of the corresponding signals in the ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectra of the crude reaction mixtures. ${ }^{\text {b }}$ R elative yields; each datum represents the mean of at least three experiments. ${ }^{c} \mathbf{B}, 0.1 \mathrm{~g} ; \mathrm{Cr}(\mathrm{CO})_{6}, 0.1 \mathrm{~g}$; solvent, $15 \mathrm{ml} .{ }^{\mathrm{d}} \mathbf{B}, 1 \mathrm{~g} ; \mathrm{Cr}(\mathrm{CO})_{6}, 3.3 \mathrm{~g}$; solvent, 150 ml . ${ }^{\mathbf{e}} \mathbf{B 1} 1,0.05 \mathrm{~g} ; \mathrm{Cr}(\mathrm{CO})_{6}, 0.15 \mathrm{~g} ;$ solvent, $5 \mathrm{ml} .{ }^{\mathrm{f}} \mathbf{B 2}, 0.05 \mathrm{~g} ; \mathrm{Cr}(\mathrm{CO})_{6}, 0.15 \mathrm{~g}$; solvent, 5 ml .

Table $2{ }^{1} \mathrm{H} N \mathrm{~N} R$ chemical shift values ${ }^{\mathrm{a}}$ for the free and $\mathrm{Cr}(\mathrm{CO})_{3}$-complexed 4b,9,9a,10-tetrahydroindeno[1,2-a]indene, B

	H 1	H21	H22	H4	H5	H6	H7	H 1^{\prime}	H2'1	H 2'2	H4'	H5	H 6'	H7'
B	3.39	3.21	2.71	7.42	7.08-7.16			4.61	2.71	3.21	7.08-7.16			7.72
B1	3.41	3.22	2.89	7.26	7.10	7.20	7.42	4.45	2.56	3.07	5.64	5.52	5.56	6.20
B2	3.41	3.29	3.12	5.48	5.61	5.36	5.91	4.64	2.82	3.33		7.10-7.20		7.50
B3	3.37	3.18	3.15	6.01	5.58	5.48	5.77	4.53	2.80	3.35	5.58	5.62	5.57	6.23
B4	3.47	3.23	2.97	5.82	5.58	5.56	6.24	4.47	2.87	3.23	5.82	5.58	5.56	6.24

${ }^{\text {a }} \delta$ from internal SiM_{4} taken as reference. Solvent, $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone; T 298 K . For proton labelling, see $\mathrm{Figs} 4-$.6 . For the assignment of the methylene protons, see R esults.

Scheme 1 Orientation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ units in mono- and biscomplexed Bs
(Table 1, run 2) we obtained almost quantitative conversion of the ligand into four different complexes that were isolated as yellow, crystalline and air-stable solids. On the basis of their mass and NMR spectra (see Experimental) and X-ray crystallographic measurements (see below), they have been identified as the complexes B1-B4.
A mong the bis-complexes, the formation of $\mathbf{B} \mathbf{3}$, the unsymmetrical syn, anti isomer, is largely favoured with respect to B4, the symmetrical anti, anti complex. The yield of the anti-monocomplex B1 bearing the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit at the convex side of the ligand, is much higher than that of the syn isomer, $\mathbf{B} \mathbf{2}$, even if the molar ratio $\mathrm{Cr}(\mathrm{CO})_{6}$-ligand is lowered to $1: 1$ (cf. run 1). The preference for complexation of the anti face over the syn face of the C_{s}-diindan \mathbf{B} may arise from steric considerations.

In order to induce the possible mobility of the $\mathrm{Cr}(\mathrm{CO})_{3}$ group in the various complexes, we heated the substrates B1-B4 in decalin at $150^{\circ} \mathrm{C}$ in the presence of a large excess (50 equiv., or more) of hexamethylbenzene as a $\mathrm{Cr}(\mathrm{CO})_{3}$ scavenger. All com-

Table $3{ }^{13} \mathrm{C}$ NMR chemical shift values ${ }^{\text {a }}$ for the free and $\mathrm{Cr}(\mathrm{CO})_{3}$ complexed 4b,9,9a,10-tetrahydroindeno[1,2-a]indene, B

	B	B1	B2	B3	B4
Cr1-C \equiv O	-	-	233.98	234.07	234.54
C1	43.64	42.92	41.56	40.75	42.39
C2	39.49	37.84	40.64	36.65	38.76
C3	145.36	143.41	120.55	115.48	115.69
C4	125.45	126.29	88.49	91.73	92.19
C5	127.47	127.78	95.87	96.39	94.78
C6	127.35	128.48	92.78	91.90	93.66
C7	125.09	125.22	91.16	92.43	92.45
C8	143.67	142.90	118.65	116.97	115.19
Cr2-C \equiv O	-	234.99	-	234.88	234.54
C1	57.47	56.57	56.10	55.58	55.96
C2 $^{\prime}$	39.49	39.02	37.69	39.77	38.76
C3 $^{\prime}$	145.36	115.81	139.58	116.15	115.69
C4 $^{\prime}$	125.45	91.82	125.58	89.26	92.19
C5 $^{\prime}$	127.47	94.58	127.92	95.72	94.78
C6 $^{\prime}$	127.35	93.77	128.52	93.48	93.66
C7 $^{\prime}$	125.09	92.43	124.75	92.62	92.45
C8 $^{\prime}$	143.67	117.04	143.70	115.02	115.19

a δ from internal SiM_{4} taken as reference. Solvent, $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone; T 298 K. For carbon labelling, see Figs. 4-6.
plexes turned out to be remarkably stable Even after prolonged heating, the exchange product, $\mathrm{Cr}(\mathrm{CO})_{3}-\mathrm{C}_{6} \mathrm{Me}_{6}$, was never observed and the different complexes do not display any tendency to lose the organic unit under such conditions. This behaviour clearly parallels that shown by the complexes of isomer $\mathbf{A}^{\mathbf{2}}$ and is in contrast with the different reactivity exhibited by the $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes of \mathbf{C} and with another related centrotriindan, 10 -methyltribenzotriquinacene ${ }^{6}$

In contrast with the stability of B1-B4 in decalin-hexamethylbenzene solutions, attempts to examine the relative reactivity of $\mathbf{B 1}$ and $\mathbf{B 2}$ under $\mathrm{Cr}(\mathrm{CO})_{3}$ complexation conditions led to more complex results. A s shown in Table 1, reaction of the anti complex $\mathbf{B 1}$ with $\mathrm{Cr}(\mathrm{CO})_{6}$ for 7 h gave no conversion; prolonged heating, however, gave rise to formation of the syn,anti complex B3 along with prevailing decomplexation. In contrast, reaction of the syn isomer B2 under similar conditions led to slow conversion to B3 and, in even smaller amounts, to the anti complex B1. Prolonged heating disfavoured the twofold complexation, generating increased amounts of B1. M oreover,

Fig. 1 Low-field portion of the ${ }^{1} \mathrm{H}$ NMR spectra of the free and $\mathrm{Cr}(\mathrm{CO})_{3}$-complexed B. Solvent, $\left.{ }^{2} \mathrm{H}_{6}\right]$ acetone; T 298 K ; $v_{0} 400.13 \mathrm{M} \mathrm{Hz}$; δ in ppm from internal SiM_{4}
it is remarkable that the anti,anti bis-complex B4 was not obtained upon reaction of $\mathbf{B} \mathbf{1}$ and $\mathbf{B} \mathbf{2}$ with additional $\mathrm{Cr}(\mathrm{CO})_{6}$. Clearly, B3 is the only direct metallation product possible from B2, but it is not evident whether the observed mono-complex B1 results from decomplexation of B2 and recomplexation to give B1, or from demetallation of B3.

N M R spectroscopic measurements

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of B1-B4 have been used for identification. The proton assignments given in Table 2 were determined by selective decoupling and $\left\{{ }^{1} \mathrm{H}\right\}-{ }^{1} \mathrm{H}$ NOE measurements. The spectra of the aromatic and alicyclic parts of the molecules are shown in Figs. 1 and 2, respectively. The ${ }^{13} \mathrm{C}$ resonances collected in Table 3 were assigned to the corresponding nuclei by partially relaxed spectra (in the case of the quaternary carbon atoms) and by 2D heterocorrelated inverse detection measurements (see Experimental and Fig. 3 for an example).

The ligand

The formal \mathbf{C}_{s} molecular symmetry of the molecule \mathbf{B} is maintained in its ${ }^{1} \mathrm{H}$ NMR spectrum which exhibits an $A B C D$ pattern due to the eight aromatic protons in the range δ 7.427.08. The apparent doublet centred at $\delta 4.61$ (1 proton) is attributed to the benzhydryl nucleus H1' by its relatively low field δ value, while the multiplet at $\delta 3.39$ (1 proton) is assigned to the methine proton H 1 . The signals due to the methylene protons appear as two multiplets (2 protons each) at $\delta 3.21$ and $\delta 2.71$; the multiplet at lower field is attributed to the hydrogen atoms located at the convex side of the molecule since they exhibit strong NOE with the methine H1 proton. The same NOE measurement allows assignment of the lowest field aromatic resonance to H 4 , i.e. to the protons at the ortho positions relative to $\mathrm{H} 1^{\prime}$. Finally, in the ${ }^{13} \mathrm{C}$ spectrum, the resonance C3 (i.e. of the quaternary carbon bonded to the methylene subunit) appears at higher field than that of C8. All these findings represent common features for the ${ }^{1} \mathrm{H} N \mathrm{NR}$

Fig. 2 High-field portion of the ${ }^{1} \mathrm{H}$ NMR spectra of the free and $\mathrm{Cr}(\mathrm{CO})_{3}$-complexed B. A rrows indicate HDO and $\mathrm{H}_{2} \mathrm{O}$ impurities.

Fig. $32 D^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ reverse detection NM R spectrum of $\mathbf{B 3}$. For the experimental conditions, see the Experimental section.
spectra of the centropolyindans of this series and those reported previously. ${ }^{2,5,6}$

M ono-complexes B1 and B2

The complexation of one of the benzene rings with $\mathrm{Cr}(\mathrm{CO})_{3}$ at either the concave or the convex face of \mathbf{B} removes the molecular symmetry of the ligand and makes the resonances of the aromatic and alicyclic moieties distinguishable enough to allow a first-order analysis of the chemical shift values (see Fig. 2). In particular, the ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectra of $\mathbf{B 1}$ and $\mathbf{B 2}$ exhibit two sets of $A B C D$ spin systems, one between $\delta 7.5$ and 7.1 and a second one between $\delta 6.2$ and 5.5 for $\mathbf{B 1}$ and between $\delta 5.9$ and 5.3 for B2. In both cases, the lower-field ABCD pattern

Fig. 4 Projection of the molecule of $\mathbf{B} \mathbf{1}$ as viewed along the $C(1)-C\left(1^{\prime}\right)$ bond

Fig. 5 Projection of the molecule of $\mathbf{B} 2$ as viewed along the $C(1)-C\left(1^{\prime}\right)$ bond
belongs to the protons on the uncomplexed ring, while the higher-field set belongs to the protons on the complexed ring. The resonances due to the methylene protons also appear as two well-defined sets and the assignments were accomplished by NOE measurements. Thenumber of resonances in the $\left\{{ }^{1} \mathrm{H}\right\}-{ }^{13} \mathrm{C}$ NM R spectra is consistent with the absence of molecular symmetry due to coordination with the metal carbonyl unit. The metal carbonyl resonance in the anti complex B1(δ 234.99) appears downfield with respect to that of the syn complex B2 $(\delta$ 233.98), as already found for the stereoisomeric $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes of related centropolyindans. ${ }^{2,5,6}$ It appears that the uncomplexed ring is positioned in such a way that it exerts a slight shielding anisotropy to the syn metal carbonyls.

Bis-complexes B3 and B4

The NMR spectrum of the syn-anti complex B3 also reflects the absence of molecular symmetry. In fact, two different ABCD systems were observed in the range $\delta 6.25-5.45$ for the aromatic protons and two A B patterns in the range $\delta 2.8$-3.4 for the methylene protons. M oreover, in the ${ }^{13} \mathrm{C} N \mathrm{M}$ R spectrum, all 16 of the ligand carbon atoms have distinct resonances in addition to the two signals for the metal carbonyl resonances that are observed at $\delta 234.88$ and 234.07. Symmetry and steric considerations require that one of the $\mathrm{Cr}(\mathrm{CO})_{3}$ units is coordinated to the concave side of the ligand and the second to the convex side. This geometry is confirmed by the X-ray structure of B3 (see below). Conversely, the ${ }^{1} H$ NM R spectrum of the anti, anti complex B4 consists of a single ABCD pattern between $\delta 6.3$ and 5.5 , and a single AB system the components of which are centred at $\delta 2.87$ and 3.23. The carbon spectrum indicates a symmetrically complexed ligand and resonance for the metal carbonyls at $\delta 234.54$. Steric considerations require that both $\mathrm{Cr}(\mathrm{CO})_{3}$ units are bound in the anti orientation.

Fig. 6 Projection of the molecule of B3 as viewed along the C(1)-C(1') bond

$X-R$ ay measurements

Crystals of $\mathbf{B} \mathbf{2}$ and $\mathbf{B 3}$ suitable for \mathbf{X}-ray analysis were obtained by isothermal slow evaporation under an inert atmosphere of concentrated solutions in a 1:1:1 mixture of acetone, methanol and methylene chloride. Crystals of B1 were grown from methylene chloride-light petroleum by slow evaporation. In the case of B4, no suitable crystals have been obtained.

The results of the \mathbf{X}-ray analysis for $\mathbf{B 1} \mathbf{1 , B 2}$ and $\mathbf{B 3}$ are shown in Figs. 4,5 and 6, respectively. Crystal data and details of the intensity data collection for $\mathbf{B 1} \mathbf{1 , B} \mathbf{2}$ and $\mathbf{B 3}$ are reported in Table 4. In complexes $\mathbf{B} \mathbf{1}$ and $\mathbf{B 2}$, the $\mathrm{Cr}(\mathrm{CO})_{\mathbf{3}}$ units are bound to the convex (anti) and concave (syn) sides of the ligand, respectively. In complex B3, the two $\mathrm{Cr}(\mathrm{CO})_{3}$ units are bound to the concave and convex sides of the ligand. All bond lengths of the complexed benzene groups are longer ($1.42 \AA$ on average) than for the uncomplexed rings ($1.39 \AA$); the bond angles $\mathrm{Cr}-\mathrm{C} \equiv \mathrm{O}$ deviate only slightly from 180°, and all $\mathrm{C}-\mathrm{Cr}-\mathrm{C}$ bond angles are within the range $86-91^{\circ}$ (Table 5). No significant intermolecular contact distances are observed to affect the molecular structures.

Discussion

The results summarized in Table 1 indicate that the anticomplexation with one $\mathrm{Cr}(\mathrm{CO})_{3}$ on the convex side of the ligand is favoured as compared to the syn-complexation on the concave side. An anti/syn preference of ca. 2 can be estimated from the product ratio $\mathbf{B 1 / B} 2$ in run 1 in which the lower $\mathrm{Cr}(\mathrm{CO})_{6} /$ ligand ratio and the shorter reaction time reduces the likelihood of bismetallation. The observed anti/syn ratio parallels the trend observed previously for the isomeric C_{2}-diindan ${ }^{2}$ and, even if with a higher anti/syn ratio, for a related centrotriindan having a pronounced convex/concave structure, viz., 10-methyltribenzotriquinacene. ${ }^{6}$ Thus, it is reasonably ascribed to steric causes. The relative amounts of the two isomeric biscomplexes B3 and B4 produced in run 2 by using a markedly higher $\mathrm{Cr}(\mathrm{CO})_{6} / l$ ligand ratio and longer reaction times clearly indicate a different reactivity of the two mono-complexes towards the second metallation. This is further supported by the observations of runs 3 and 4 (Table 1) in which B1 was found to be relatively unreactive while $\mathbf{B} 2$ did undergo substitution. A gain, these results parallel earlier results ${ }^{2,5,6}$ in which an anti-mono-complex was found to be less reactive towards $\mathrm{Cr}(\mathrm{CO})_{6}$ than the corresponding syn-mono-complex.

A lthough there are inherent problems in utilizing solid state structures to understand the reactivity in solution, the availability of molecular structures for B1, B2 and B3 does permit some comparisons to be made. In all cases, all bond lengths and angles are within normal ranges for (arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ com-

Table 4 Summary of the crystal data and intensity collection for $\mathbf{B} \mathbf{1 , B} \mathbf{B}$ and B3

	B1	B2	B3
Formula	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{CrO}_{3}$	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{CrO}_{3}$	$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{O}_{6}$
M	342.3	342.3	478.3
Space group	P $21 / \mathrm{n}$	P1	P1
a/A	9.479(3)	11.807(6)	13.263(7)
b / \AA	15.570(5)	8.451(5)	10.058(5)
c / \AA	10.995(3)	7.906(4)	7.393(4)
$a /^{\circ}$	90	77.3(2)	92.5(1)
$\beta 1{ }^{\circ}$	99.4	77.2(2)	99.7(1)
$\gamma /{ }^{\circ}$	90	85.0(1)	93.7(1)
V / A^{3}	1601.0	750.1	968.6
Z	4	2	2
Cryst. dimensions/mm	$0.31 \times 0.31 \times 0.33$	$0.30 \times 0.30 \times 0.25$	$0.25 \times 0.30 \times 0.30$
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{~cm}^{-3}$	1.42	1.52	1.64
μ / cm^{-1}	7.6	7.16	14.61
T/K	297	298	298
R adiation (λ / \AA)	G raphite-monochromated M 0-K $\alpha(\lambda=0.7107)$		
Take off angle/ ${ }^{\circ}$	4	3	3
Scan speed/ ${ }^{\circ} \mathrm{min}^{-1}$		the 2θ mode	
2θ range/ ${ }^{\circ}$	$4.0 \leqslant 2 \theta \leqslant 50$	$3.0 \leqslant 2 \theta \leqslant 45$	$3.0 \leqslant 2 \theta \leqslant 45$
U nique reflections [$\left.\mathrm{F}_{0}{ }^{2}=2 \sigma\left(\mathrm{~F}_{0}{ }^{2}\right)\right]$	1914	3625	3002
R (on F_{0})	0.043	0.066	0.033

pounds. In $\mathbf{B} 2$ and $\mathbf{B} 3$ the syn $\mathrm{Cr}(\mathrm{CO})_{\mathbf{3}}$ group occupies a 'pocket' formed by two arene rings. A s has been observed for similar compounds, the oxygen atom of one of the carbonyl groups of $\mathbf{B 2}, \mathrm{C} 10-02$ (see Fig. 5), is positioned near the central normal of the second benzene ring at a distance of ca. $3.15 \AA$. The prevalence of this conformation within the whole class of centrodi- and centrotri-indan $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes suggests that there is a weak stabilizing interaction between the carbonyl and the adjacent aromatic electron cloud. ${ }^{2,5,6} \mathrm{~A}$ nother short distance, also found for this class of compounds ${ }^{2,5,6}$ and believed to stabilize the structure, was observed between H2'1 and the middle point of the carbonyl C9-01 (ca. $2.90 \AA$ in B2 and $2.80 \AA$ in B3). These two weak interactions may be responsiblefor the deviation of the syn- $\mathrm{Cr}(\mathrm{CO})_{3}$ tripod from an ideal staggered exo-conformation by ca. $5-7^{\circ}$ as well as of its slippage by ca. 0.04-0.06 \& towards C4, C 5 and C 6 .

Perhaps the most significant differences between the structures of the mono-complexed species are related to the twisting about the central $\mathrm{C} 1-\mathrm{C} 1^{\prime}$ bond as measured by the torsional angle H1-C1-C1'-H 1^{\prime}. This angle is 25.9° for $\mathbf{B} 1$ and 27.5° for B2 (and ca. 18° in the free ligand). ${ }^{4}$ A s anticipated in the Introduction, the immediate cause for this twisting is the mutual repulsion of the two methine protons H 1 and and $\mathrm{H} 1^{\prime}$, and the syn methylene hydrogens H 21 and $\mathrm{H} 2^{\prime} 1$. In the anti-mono-complex B1 the H2'2 and H1' hydrogens are in a more 'equatorial' position relative to the complexed arene ring so relieving their repulsive interactions with H 1 and the carbonyls. M oreover, the repulsive nonbonding interactions between the methylene syn hydrogens H 21 and $\mathrm{H} 2^{\prime} 1$ are also strongly decreased. On the other hand, H 1 results in a more 'axial' position, and this fact is expected to influence the conformation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ group. A ctually, the orientation of the inorganic tripod $\mathrm{Cr}(\mathrm{CO})_{\mathbf{3}}$ in $\mathbf{B} 1$ significantly deviates from the most common exo staggered conformation (10-11) toward an eclipsed arrangement and the anti $\mathrm{Cr}(\mathrm{CO})_{3}$ group in $\mathbf{B 3}$ is almost in the eclipsed conformation (see Table 5). As a consequence of the twisting about the C1-C1' bond, both the H 22 (anti) and the H_{1}^{\prime} protons are orientated axial to the noncomplexed arene ring and strongly hinder complexation of an incoming chromium group to the free anti face (cf. preparative run 3). In contrast, the steric arrangement of the ligand as stabilized by the anti complexation does not appear to exclude the coordination of a second chromium group to the syn side of the second arene ring. This is in agreement with the results of the preparative run 4, even though a long reaction time is required to obtain a significant yield of B3.

The molecular structure of $\mathbf{B} 2$ reveals that in the syn complex the H 21 methylene hydrogen and the $\mathrm{C} 1^{\prime}-\mathrm{C} 8^{\prime}$ bond are in a more equatorial position relative to the complexed ring, while H1' and H2'2 are still in the equatorial position relative to the anti face of the noncomplexed arene ring. As a consequence, the free anti side is sterically accessible for chromium complexation. H ence formation of the syn, anti bis- $\mathrm{Cr}(\mathrm{CO})_{3}$ complex $\mathbf{B} 3$ from B2 should be sterically allowed as evidenced by the preparative run 4 (Table 1).

The molecular structure of the bis-complex B3 confirms the structural arguments developed above as the environments of each of the two $\mathrm{Cr}(\mathrm{CO})_{3}$ groups are very close to those observed for the corresponding $\mathrm{Cr}(\mathrm{CO})_{\mathbf{3}}$ groups in $\mathbf{B} 1$ and $\mathbf{B} 2$. In fact, it might be argued that the syn, anti complexation in these compounds is synergistic, leading to $\mathbf{B} 3$ as the favoured product. The torsion about the C1-C1' bond of B3 is 23.1°. As in the mono complexes, the repulsive nonbonding interaction between the syn hydrogens H 21 and $\mathrm{H} 2^{\prime} 1$ of the methylene groups is mostly relieved and the atoms are actually at ca. $2.33 \AA$ from each other. The anti $\mathrm{Cr}(\mathrm{CO})_{3}$ tripod is rotated from an idealized eclipsed conformation only by $5-6^{\circ}$, whereas the syn $\mathrm{Cr}(\mathrm{CO})_{3}$ group deviates by only $4-5^{\circ}$ from the staggered exo conformation. Short distances are observed between H1 and H2'1 and the middle point of the carbonyls C13-05 (2.83 \AA) and C9-01 (2.80 \AA), respectively. The oxygen atom 02 lies very close to the central normal to the plane of the adjacent anti-coordinated adjacent benzene ring at a distance of $3.10-3.15 \AA$ which is significantly shorter than that observed for B2 $(3.30 \AA)$, as expected. A gain, this is in agreement with the behaviour of related bis- and tris- $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes of centro-polyindans in which the interaction takes place between a carbonyl of a syn- $\mathrm{Cr}(\mathrm{CO})_{3}$ group and an anti-$\mathrm{Cr}(\mathrm{CO})_{3}$-complexed benzene ring. ${ }^{4-6}$

Experimental

G eneral

All the reactions and complex manipulations were performed in an oxygen-free argon atmosphere. The solvents were carefully dried and deoxygenated before use. $\mathrm{Cr}(\mathrm{CO})_{6}$ was sublimed twice under reduced pressure just before use. Solvent mixtures, reaction times and complexing agent/substrate ratios are given in Table 1. The percentages of complexation products were determined by integration of the corresponding signals in the ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixtures. In the preparative experiments, the pure products were obtained by flash

Table 5 Selected geometrical parameters for B1, B 2 and B3

	B1	B 2	B3
Bond distances/Å			
Cr1-C3		2.240(5)	2.226(9)
Cr1-C4		2.219(3)	2.213(9)
Cr1-C5		2.205(5)	2.204(9)
Cr1-C6		2.218(4)	2.211(9)
Cr1-C7		2.240(4)	2.215(9)
Cr1-C8		2.270(3)	2.247(8)
Cr1-C9		$1.834(4)$	1.841(9)
Cr1-C10		1.857(4)	1.825(9)
Cr1-C11		1.829(4)	1.843(9)
01-C9		1.155(4)	1.15(1)
02-C10		1.138(4)	1.16(1)
03-C11		1.161(4)	1.15(1)
Cr2-C3'	2.225(3)		2.239(8)
Cr2-C4	2.226(4)		2.254(9)
Cr2-C5	2.220(4)		2.210(9)
Cr2-C6	2.217(4)		2.227(9)
Cr2-C7	2.227(4)		2.230(8)
Cr2-C8'	2.242(4)		2.233(8)
Cr2-C12	1.846(4)		1.84(1)
Cr2-C13	1.839(4)		1.830(9)
Cr2-C14	$1.838(4)$		1.832(9)
04-C12	1.162(6)		1.15(1)
05-C13	1.156(5)		1.16(2)
06-C14	1.152(5)		1.17(1)
$\mathrm{M}(1)-\mathrm{H} 21^{\text {a }}$	>3.0	2.90	2.80
M (5)-H $1^{\text {a }}$	2.94		2.83
Bond angles $/{ }^{\circ}$			
C9-Cr1-C10		88.6(4)	88.8(5)
C9-Cr1-C11		90.0(2)	88.7(4)
C10-Cr1-C11		87.4(3)	88.2(4)
Cr1-C9-01		177.2(4)	178.2(9)
Cr1-C10-02		176.8(3)	177.5(8)
Cr1-C11-03		178.5(5)	180.0(9)
C12-Cr2-C13	91.3(2)		88.6(6)
C12-Cr2-C14	89.9(2)		87.4(5)
C13-Cr2-C14	85.5(2)		87.1(5)
Cr2-C12-04	177.8(4)		179.0(9)
Cr2-C13-05	177.1(4)		179.0(9)
Cr2-C14-06	177.5(4)		178.0(9)
Torsion angles/ $/{ }^{\text {b }}$			
C3-P(1)-Cr1-C9		-23.4	-33.2
C5-P(1)-Cr1-C11		-24.0	-35.0
C7-P(1)-Cr1-C10		-24.2	-34.8
C3'-P(2)-Cr2-C13	-19.2		5.7
C5'-P(2)-Cr2-C12	-21.0		7.3
C7'-P(2)-Cr2-C14	-20.7		5.6
H 1-C1-C1'-H 1^{\prime}	25.9	27.5	23.1

${ }^{a} M(n)$ represents the middle point of the carbonyl group $C \equiv O(n) .{ }^{b} P(n)$ represents the centre of the phenyl ring bonded to $\mathrm{Cr}(\mathrm{n})$.
chromatography of the residue on silica (diethyl ether-pentane mixtures as eluent) after removal of the solvents. All the complexes appear as yellow, air-stable microcrystalline powders. M elting points are uncorrected. The microanalyses were performed by Mr L. Turiaco, Dipartimento di Chimica Inorganica, M etallorganica ed A nalitica, U niversità di Padova and the data obtained were in agreement within 0.3% with those calculated for both C and H . The IR spectra were recorded as tetrahydrofuran (THF) solutions with a Perkin-Elmer 580B spectrophotometer and the 70 eV electron impact mass spectra were measured with a VG 16 M icroM ass spectrometer.

Complex anti-Cr(CO $)_{3}$-4b,9,9a,10-tetrahydroindeno[1,2-a]indene, B1. $\mathrm{Mp}=138-140^{\circ} \mathrm{C}$ (decomp.) (Found: C, 66.6; H, 4.3. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{CrO}_{3}$ requires: $\mathrm{C}, 66.7 ; \mathrm{H}, 4.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1961vs and $1885 \mathrm{vs}(\mathrm{C} \equiv 0)$; $\mathrm{m} / \mathrm{z} 342\left(\mathrm{M}^{\cdot+}, 13.6\right), 286\left(\mathrm{M}^{++}-2 \mathrm{CO}, 18.4\right)$, $258\left(\mathrm{M}^{++}-3 \mathrm{CO}, 100\right), 206\left[\mathrm{M}^{++}-(\mathrm{Cr}, 3 \mathrm{CO}), 4.1\right]$ and 52 ($\mathrm{Cr}^{+}, 85.0 \%$).

Complex syn- $\mathrm{Cr}\left(\mathrm{CO}_{3}\right.$-4b,9,9a,10-tetrahydroindeno[1,2-a] indene, B2. $\mathrm{M} \mathrm{p}=181-183^{\circ} \mathrm{C}$ (decomp.) (Found: C, 66.5; H, 4.4. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{CrO}_{3}$ requires: $\left.\mathrm{C}, 66.7 ; \mathrm{H}, 4.1 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1964 \mathrm{vs}$, 1893vs and 1885vs ($\mathrm{C} \equiv 0$); m/z $342\left(\mathrm{M}^{++}, 8.4\right), 286\left(\mathrm{M}^{++}-2\right.$ CO, 8.3), $258\left(\mathrm{M}^{\cdot+}-3 \mathrm{CO}, 100\right), 206\left[\mathrm{M}^{++}-(\mathrm{Cr}, 3 \mathrm{CO}), 5.5\right]$ and 52 ($\mathrm{Cr}^{+}, 76.7 \%$).
Complex syn,anti-[Cr(CO $\left.)_{3}\right]$ b-4b,9,9a,10-tetrahydroindeno-[1,2-a]indene, B3. $\mathrm{M} \mathrm{P}=188-190^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 55.1$; H , 3.1. $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{O}_{6}$ requires: $\mathrm{C}, 55.2 ; \mathrm{H}, 3.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1962vs and 1888vs ($\mathrm{C}=0$); m/z $478\left(\mathrm{M}^{\cdot+}, 21.1\right)$, $422\left(\mathrm{M}^{++}-2\right.$ C0, 3.4), $394\left(M^{+}+3 C 0,15.3\right), 366\left(M^{\cdot+}-4 C 0,23.1\right), 342$ $\left[M^{\cdot+}-(C r, 3 C O), 2.4\right], 338\left(M^{++}-5 C 0,42.2\right), 310\left(M^{++}-6\right.$ C0, 25.9), $286\left[\mathrm{M}^{++}-(\mathrm{Cr}, 5 \mathrm{CO}), 2.7\right), 258\left[\mathrm{M}^{++}-(\mathrm{Cr}, 6 \mathrm{CO})\right.$, 100], $206\left[\mathrm{M}^{++}-(2 \mathrm{Cr}, 6 \mathrm{CO}), 5.8\right]$ and $52\left(\mathrm{Cr}^{+}, 91.8 \%\right)$.
Complex anti,anti-[Cr(CO $)_{3} 3$-4b,9,9a,10-tetrahydroindeno-[1,2-a]indene, B4. $\mathrm{M} \mathrm{p}=178-180^{\circ} \mathrm{C}$ (decomp.) (Found: $\mathrm{C}, 55.0$; $\mathrm{H}, 3.2 . \mathrm{C}_{22} \mathrm{H}_{14} \mathrm{Cr}_{2} \mathrm{O}_{6}$ requires: $\mathrm{C}, 55.2 ; \mathrm{H}, 3.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1970vs, 1959vs, 1890vs and 1888sh ($\mathrm{C} \equiv 0$); m/z 478 ($\mathrm{M}^{++}, 23.1$), 422 (M^{++}- 2 CO, 3.4), $394\left(\mathrm{M}^{++}-3 \mathrm{CO}, 30.6\right), 366\left(\mathrm{M}^{++}-\right.$ $4 \mathrm{CO}, 12.9), 342\left[\mathrm{M}^{++}-(\mathrm{Cr}, 3 \mathrm{CO}), 2.7\right], 338\left(\mathrm{M}^{++}-5 \mathrm{CO}\right.$, 50.3), $310\left(\mathrm{M}^{++}-6 \mathrm{CO}, 26.5\right), 286\left[\mathrm{M}^{++}-(\mathrm{Cr}, 5 \mathrm{CO}), 4.8\right], 258$ $\left[\mathrm{M}^{++}-(\mathrm{Cr}, 6 \mathrm{CO}), 97.3\right], 206\left[\mathrm{M}^{++}-(2 \mathrm{Cr}, 6 \mathrm{CO}), 4.8\right]$ and 52 ($\mathrm{Cr}^{+}, 100 \%$).

C ollection of NM R data

A ppropriate $20-40 \mathrm{mmol} \mathrm{dm}{ }^{-3}$ solutions for both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic measurements were obtained by using carefully dried, oxygen-free [${ }^{2} \mathrm{H}_{6}$]acetone. The proton spectra were recorded on a Bruker AM-400 spectrometer operating at 400.133 M Hz ; the ${ }^{1} \mathrm{H}$ chemical shift values, taken against internal SiMe_{4}, are given in Table 2. The proton-decoupled $100.614 \mathrm{M} \mathrm{Hz}{ }^{13} \mathrm{C}$ N M R spectra were obtained with the same solutions by using a 6 s delayed Waltz-like CPD decoupling technique with full recovery of the Overhauser line enhancement to get satisfactory signal-to-noise ratios after 256-512 accumulations on a 64 K word size. Two-dimensional NMR spectra were processed on a Bruker X-32 workstation. Heterocorrelated spectra were obtained with the pulse sequence of Bodenhausen and Ruben ${ }^{7}$ modified with a spin-lock purge pulse by Otting and Wütrich. ${ }^{8}$ Q uadrature detection along ω_{1} was achieved using the TPPI method. ${ }^{9,10}$ Typically, data matrices of 128 FID s by 2 K complex points were collected, for total acquisition times of 12-14 h. Spin-lock pulses of 2 ms were employed. Before transformation, the data points were multiplied by shifted sine or sine squared window functions and zero filled to $1 \mathrm{~K} \times 1 \mathrm{~K}$ real points. The ${ }^{13} \mathrm{C}$ chemical shifts are listed in Table 3.

C ollection of X -ray diffraction data

$X-R$ ay-quality crystals of $\mathbf{B} 1$ wereobtained by slow evaporation from methylene chloride solutions, while $\mathbf{B} \mathbf{2}$ and $\mathbf{B} \mathbf{3}$ were grown from saturated solutions in an 1:1:1 mixture of acetone, methanol and methylene chloride. Single crystals of B1 were mounted on a Nicolet R 3 diffractometer, whereas a Philips PW-100 computer-controlled four-circle diffractometer with graphite monochromator was used for B2 and B3. Standard centring and autoindexing procedures indicated a monoclinic lattice for B1 and triclinic lattices for both B2 and B3. The space group P1 was initially assigned to B2 and B3 and later confirmed by a well-behaved refinement process; in the case of $\mathbf{B} \mathbf{1}$, the $P 2_{1} / n$ space group was uniquely determined by systematic absences in the diffraction data. The orientation matrix and accurate unit cell dimensions were determined from angular settings of 25 high-angle reflections. The intensities were corrected for Lorentz and polarization effects and for absorption by empirical methods (ψ-scan). Crystallographic data are collected in Table 4. In all cases, the structures were solved from Patterson syntheses and completed from difference maps. All non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen atoms were treated as idealized con-
tributions. Blocked-cascade least-square refinements were used. They converged to the conventional R indexes reported in Table 4. A unitary weighting scheme was used. Scattering factors for the atoms were taken from Cromer and Waber; ${ }^{11}$ the scattering factors for Cr were corrected for the real and the imaginary parts of anomalous dispersion using Cromer's values. ${ }^{12}$ All computations were carried out on a Cyber 76 computer using the SHELX-76 program. ${ }^{13}$ A tomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 2, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 188/56.

A cknowledgements

This work was supported in part by the Consiglio N azionale delle Ricerche (CNR, Roma) through its Centro di Studio sugli Stati M olecolari Radicalici ed Eccitati, by the Deutsche Forschungsgemeinschaft (DFG, Ku 663 1-2) and by the Fonds der Chemischen Industrie (FCI). The authors are indebted to Professor S. M ammi, Dipartimento di Chimica Organica, Università di Padova, for recording the 2D-heterocorrelated NMR spectra.
B. Paisdor and D. Gestmann, J. Chem. Soc., Perkin Trans. 2, 1995, 721; (b) D. Kuck, A. Schuster, D. Gestmann, F. Posteher and H. Pritzkow, Chem. Eur. J., 1996, 2, 58; (c) D. Kuck, Synlett, 1996, 949.

2 A. Ceccon, A. Gambaro, F. M anoli, A. Venzo, P. Ganis, D. K uck and G. Valle, J. C hem. Soc., Perkin Trans. 2, 1992, 1111.
3 (a) D. K uck, T. Lindenthal and A. Schuster, C hem. B er., 1992, 125, 1449; (b) W. H. L aarhoven, F. A. Lijten and J. M. M. Smits, J. Org. Chem., 1985, 50, 3209; (c) S. J. Cristol and B. B. Jarvis, J. A m. Chem. Soc., 1967, 89, 401; (d) W. Baker, J. F. W. M cO mie, S. D. Parfitt and D. A. M . Watkins, J. C hem. Soc., 1957, 4026.

4 J. M. M. Smits, J. H. N oordik, P. T. Beurkens, W. H. Laarhoven and F. A. T. Lijten, J. Cryst. Spectrosc. Res., 1986, 16, 23.

5 A. Ceccon, A. Gambaro, F. M anoli, A. Venzo, P. G anis, G. Valle and D. K uck, C hem. Ber., 1993, 126, 2053.
6 A. Ceccon, A. Gambaro, F. M anoli, A. Venzo, D. Kuck, T. E. Bitterwolf, P. G anis and G. Valle, J. Chem. Soc. Perkin Trans. 2,1991, 233.
7 G. B odenhausen and D. Ruben, Chem. Phys. L ett., 1980, 69, 185.
8 G. Otting and K. W ütrich, J. M agn. R eson., 1988, 76, 569.
9 G. Drobny, A. Pines, S. Sinton, D. Weitekamp and D. Wemmer, Faraday Symp. C hem. Soc., 1979, 13, 49.
10 G. Bodenhausen, R . L. Vold and R . R . Vold, J. M agn. R eson., 1980, 37, 93.
11 D. T. Cromer and J. T. Waber, A cta C rystallogr., 1965, 18, 184.
12 D. T. Cromer, A cta C rystallogr., 1965, 18, 17.
13 G. M.Sheldrick, SHELX-76, A System of Computer Programs for X-ray Crystal Structure Determination, Cambridge University, England, 1976.

Paper 6/06716F
Received 2nd O ctober 1996
A ccepted 22nd N ovember 1996

[^0]: \dagger For Part 3, see ref. 5.

